试题
题目:
如图,在△ACB中,∠ACB=90°,AB=5cm,BC=3cm,AB的垂直平分线DE交BC的延长线于点F,则CF=
7
6
7
6
cm.
答案
7
6
解:如图,连接AF,∵DF是AB的垂直平分线,
∴AF=BF,
设CF=x,则AF=BF=x+3,
∵∠ACB=90°,AB=5cm,BC=3cm,
∴AC=
AB
2
-BC
2
=
5
2
-3
2
=4cm,
在Rt△ACF中,AC
2
+CF
2
=AF
2
,
即4
2
+x
2
=(x+3)
2
,
解得x=
7
6
,
即CF=
7
6
cm.
故答案为:
7
6
.
考点梳理
考点
分析
点评
线段垂直平分线的性质;勾股定理.
连接AF,根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,设CF=x,表示出AF=BF=x+3,利用勾股定理列式求出AC,在Rt△ACF中,利用勾股定理列出方程求解即可.
本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,作出辅助线是解题的关键.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )