试题

题目:
在△ABC中,若AB=AC=20,BC=24,则BC边上的高AD=
16
16
,AC边上的高BE=
19.2
19.2

答案
16

19.2

青果学院解:∵AB=AC,AD⊥BC,
∴BD=CD=12.
在Rt△ABD中,AD=
AB2-BD2
=
202-122
=16.
∵线段BE是AC边上的高,
∴S△ABC=
1
2
BC·AD=
1
2
AC·BE,
∴BE=
BC·AD
AC
=
24×16
20
=19.2.
故答案是:16;19.2.
考点梳理
勾股定理.
根据等腰三角形“三合一”的性质求得BD=CD=12;然后在Rt△ABD中,利用勾股定理求得AD=16;最后由面积法求BE的长度.
本题考查了勾股定理.注意:等腰三角形“三线合一”性质在解题过程中的应用.
找相似题