试题
题目:
(2013·秀洲区二模)一副三角板按如图方式摆放,A、B、D三点在直线l上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠EFD=30°,已知DE=10cm,求:
(1)点E到直线l的距离;
(2)B、D两点间的距离.
答案
解:(1)过E作EG⊥l于G,
∵∠EFD=30°,∠EDF=90°
∴∠FED=60°,
∴∠GED=30°,
∴GE=
3
2
DE=5
3
cm,
∴点E到直线l的距离为
5
3
cm;
(2)∵EF∥AD,
∴FH=EG=5
3
,
∵∠C=45°,
∴BH=FH=5
3
,
∵∠FDH=∠EFD=30°,
∴DH=
3
FH=15,
∴BD=15-5
3
,
即B、D两点间的距离为(15-5
3
)cm.
解:(1)过E作EG⊥l于G,
∵∠EFD=30°,∠EDF=90°
∴∠FED=60°,
∴∠GED=30°,
∴GE=
3
2
DE=5
3
cm,
∴点E到直线l的距离为
5
3
cm;
(2)∵EF∥AD,
∴FH=EG=5
3
,
∵∠C=45°,
∴BH=FH=5
3
,
∵∠FDH=∠EFD=30°,
∴DH=
3
FH=15,
∴BD=15-5
3
,
即B、D两点间的距离为(15-5
3
)cm.
考点梳理
考点
分析
点评
勾股定理.
(1)过E作EG⊥l于G,过F作FH⊥l于H,求出∠GED的度数,利用三角函数的知识即可求出EG的长度;
(2)在△FBH和△FHD中,分别求出HB,HD的长度,然后用HD-HB的长度即可求得B、D两点间的距离.
本题考查了勾股定理和三角函数的知识,解答本题的关键是根据三角函数的知识在直角三角形中求出直角边的长度,难度适中.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )