试题
题目:
已知∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E,则
CE
BD
=
1
2
1
2
.
答案
1
2
解:延长CE、BA交于F点,
∵BD平分∠ABC,CE⊥BD,
∴CE=
1
2
CF,
又∵∠CED=∠DAB=90°,∠CDE=∠ADB,
∴∠ECD=∠ABD,而AB=AC,
∴△ACF≌△ABD,
∴CF=BD,
∴
CE
BD
=
1
2
CF
CF
=
1
2
.
故答案为:
1
2
.
考点梳理
考点
分析
点评
相似三角形的判定与性质;角平分线的性质;勾股定理.
延长CE、BA交于F点,由BD平分∠ABC,CE⊥BD,可证E为CF的中点,由AB=AC,利用互余关系证明△ACF≌△ABD,得出CF=BD,利用线段的关系得出结论.
本题考查了三角形全等的判定与性质.关键是根据已知条件得出等腰三角形底边上的“三线合一”,利用互余关系证明三角形全等.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )