答案

解:连接AC.
∵∠ABC=90°,AB:BC:CD:DA=2:2:3:1,
可设AB、BC、CD、DA分别为2x、2x、3x、x,(x>0)
∴AC
2=AB
2+BC
2=8x
2,
而DA
2+AC
2=9x
2=CD
2,
∴∠DAC=90°,
又∵AB=BC,∠BAC=45°,
∴∠DAB=90°+45°=135°.
答:∠DAB的度数为135°.

解:连接AC.
∵∠ABC=90°,AB:BC:CD:DA=2:2:3:1,
可设AB、BC、CD、DA分别为2x、2x、3x、x,(x>0)
∴AC
2=AB
2+BC
2=8x
2,
而DA
2+AC
2=9x
2=CD
2,
∴∠DAC=90°,
又∵AB=BC,∠BAC=45°,
∴∠DAB=90°+45°=135°.
答:∠DAB的度数为135°.