试题

题目:
青果学院如图,已知AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,求∠DAB的度数.
答案
青果学院解:连接AC.
∵∠ABC=90°,AB:BC:CD:DA=2:2:3:1,
可设AB、BC、CD、DA分别为2x、2x、3x、x,(x>0)
∴AC2=AB2+BC2=8x2
而DA2+AC2=9x2=CD2
∴∠DAC=90°,
又∵AB=BC,∠BAC=45°,
∴∠DAB=90°+45°=135°.
答:∠DAB的度数为135°.
青果学院解:连接AC.
∵∠ABC=90°,AB:BC:CD:DA=2:2:3:1,
可设AB、BC、CD、DA分别为2x、2x、3x、x,(x>0)
∴AC2=AB2+BC2=8x2
而DA2+AC2=9x2=CD2
∴∠DAC=90°,
又∵AB=BC,∠BAC=45°,
∴∠DAB=90°+45°=135°.
答:∠DAB的度数为135°.
考点梳理
勾股定理.
根据AB:BC:CD:DA=2:2:3:1,设AB、BC、CD、DA分别为2x、2x、3x、x,可以求得∠DAC=90°,根据AB=BC可以求得∠BAC=45°,即可计算∠DAB.
本题考查了勾股定理在直角三角形中的运用,考查了等腰三角形底角相等的性质,本题中正确的求证∠DAC=90°是解题的关键.
计算题.
找相似题