试题
题目:
如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE,垂足为E,AD⊥CE,垂足为D,
(1)判断直线BE与AD的位置关系是
平行
平行
;BE与AD之间的距离是线段
ED
ED
的长;
(2)若AD=6cm,BE=2cm.,求BE与AD之间的距离及AB的长.
答案
平行
ED
解:(1)∵BE⊥CE,AD⊥CE,
∴BE∥AD,即直线BE与AD的位置关系是:平行;BE与AD之间的距离是线段ED的长度;
(2)∵BE⊥CE,AD⊥CE,∠ACB=90°,
∴∠1+∠3=90°,∠2+∠3=90°,
∴∠1=∠2,
∵在△CBE与△ACD中,
∠BEC=∠CDA
∠2=∠1
BC=AC
,
∴△CBE≌△ACD(AAS),
∴BE=CD,EC=AD,
∴BE与AD之间的距离ED=6-2=4 (cm ).
又∵AC=BC=
36+4
=
40
,
∴AB=
80
(cm).
故答案是:平行;ED.
考点梳理
考点
分析
点评
勾股定理;全等三角形的判定与性质.
(1)在同一平面内,同垂直一条直线的两条直线相互平行;根据两平行线间的距离定义进行填空;
(2)根据全等三角形的判定定理AAS推知△CBE≌△ACD.则由全等三角形的性质易证BE=CD,EC=AC,则BE与AD之间的距离ED=6-2=4 (cm ).
本题考查了全等三角形的判定与性质,勾股定理.注意:勾股定理应用的前提条件是在直角三角形中.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )