试题
题目:
如图:三角形△ABC中,∠B=45°,∠C=60°,AB=
3
2
,AD⊥BC于D,求CD.
答案
解:∵AD⊥BC
∴∠ADB=∠ADC=90°
在Rt△ADB中
∵∠B=45°
∴∠BAD=45°
∴AD=BD
∵AD
2
+BD
2
=AB
2
∵AB=
3
2
在Rt△ADC中
∵∠C=60°
∴∠DAC=30°
∴DC=
1
2
AC
∵AD
2
+DC
2
=AC
2
∴DC=
3
答:DC=
3
.
解:∵AD⊥BC
∴∠ADB=∠ADC=90°
在Rt△ADB中
∵∠B=45°
∴∠BAD=45°
∴AD=BD
∵AD
2
+BD
2
=AB
2
∵AB=
3
2
在Rt△ADC中
∵∠C=60°
∴∠DAC=30°
∴DC=
1
2
AC
∵AD
2
+DC
2
=AC
2
∴DC=
3
答:DC=
3
.
考点梳理
考点
分析
点评
勾股定理.
在Rt△ABD中,AB的长度和∠B度数已知可求出AD长和∠BAD的角度.在△ABC中根据三角形内角和等于180度可得出∠BAC的度数,从而得到∠DAC的度数.然后结合30°角所对的直角边等于斜边的一半和勾股定理算出CD长度.
本题主要考点为:直角三角形的性质和勾股定理,在应用直角三角形的性质时应牢记30°角所对的直角边等于斜边的一半.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )