试题
题目:
如图:在△ABC中,AD是∠BAC的平分线,DE⊥AC于E,DF⊥AB于F,且FB=CE,则下列结论:①DE=DF,②AE=AF,③BD=CD,④AD⊥BC.其中正确的个数有( )
A.1个
B.2个
C.3个
D.4个
答案
D
解:∵AD平分∠BAC,DE⊥AC,DF⊥AB,
∴DE=DF,∴①正确;
由勾股定理得:AF=
AD
2
-
DF
2
,AE=
AD
2
-
DE
2
,
∵AD=AD,DF=DE,
∴AE=AF,∴②正确;
∵AF=AE,BF=CE,
∴AB=AC,
∵AD平分∠BAC,
∴BD=DC,AD⊥BC,
∴③④都正确;
∴正确的有4个.
故选D.
考点梳理
考点
分析
点评
专题
角平分线的性质;全等三角形的判定与性质;勾股定理.
根据角平分线性质求出DF=DE即可;根据勾股定理和DE=DF即可求出AE=AF;求出AB=AC,根据等腰三角形的三线合一定理即可判断③④正确.
本题考查了勾股定理,角平分线性质和等腰三角形的性质等的应用,关键是熟练地运用定理进行推理,题目比较典型,难度不大.
证明题.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )