试题
题目:
在△ABC中,∠A是钝角,AB=6,AC=8,则BC的长可能是( )
A.9
B.10
C.11
D.14
答案
C
解:根据三角形三边关系,第三边小于AB+AC=14,
当∠A为直角时,AB,AC分别是两直角边,
则第三边即斜边的长度为BC=
AB
2
+
AC
2
=10,
故10<BC<14,
只有C选项符合题意,
故选 C.
考点梳理
考点
分析
点评
专题
勾股定理;三角形三边关系.
根据三角形三边关系,第三边小于AB+AC,且BC的长度大于当∠A是直角时BC的长度,根据勾股定理即可计算∠A为直角时BC的长度.
本题考查了勾股定理在直角三角形中的运用,考查了三角形三边关系,本题中正确的根据勾股定理计算当∠A为直角时BC的长是解题的关键.
计算题.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )