试题
题目:
如图,在6×6的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.
(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为
8
;
(2)以(1)中的AB为边的一个等腰△ABC,使点C在格点上,且另两边的长都是无理数(画出一个符合条件的三角形即可).
答案
解:(1)如图,AB=
2
2
+2
2
=
8
;
(2)点C如图所示.
解:(1)如图,AB=
2
2
+2
2
=
8
;
(2)点C如图所示.
考点梳理
考点
分析
点评
专题
勾股定理.
(1)根据勾股定理,作两直角边都是2的直角三角形的斜边即可;
(2)根据线段垂直平分线上的点到线段两端点的距离相等利用网格结构作出AB的垂直平分线,经过的格点到A、B的距离是无理数的都是符合条件的顶点C.
本题考查了勾股定理,熟练掌握网格结构与等腰三角形的判定,线段垂直平分线上的点到线段两端点的距离相等的性质是解题的关键.
作图题.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )