试题
题目:
如图,三个正方形围成一个直角三角形,64,400分别为所在正方形的面积,则图中字母所代表的正方形面积是( )
A.400+64
B.
400
2
-
64
2
C.400-64
D.400
2
-64
2
答案
C
解:根据勾股定理和正方形的面积公式,得M=400-64.
故选C.
考点梳理
考点
分析
点评
勾股定理.
观察可看出M所处的正方形的面积等于直角三角形的长直角边的平方,已知斜边和另一较短的直角的平方,则不难求得字母所代表的正方形面积.
此题中运用勾股定理结合正方形的面积公式可以证明:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的面积.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )