试题
题目:
直角三角形ABC中,AC=3,BC=4,则AB
2
=( )
A.25
B.16
C.
7
或5
D.7或25
答案
D
解:当AC=3和BC=4都是直角边时,
则AB
2
=AC
2
+BC
2
=9+16=25;
当AC=3为直角边,BC=4为斜边时,
则AB
2
=BC
2
-AC
2
=16-9=7.
故选D.
考点梳理
考点
分析
点评
专题
勾股定理.
解答此题的关键是根据当AC=3和BC=4都是直角边时和当AC=3为直角边,BC=4为斜边时,这两种情况去分析解答.
此题主要考查学生对勾股定理的理解和掌握,难度不大,是一道基础题.
计算题.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )