答案

解:(1)DE=DF,理由如下:
如图,连接BD.
∵等腰直角三角形ABC中,D为AC边上中点,
∴BD⊥AC,BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=∠C.
∵DE丄DF,
∴∠FDC+∠BDF=∠EDB+∠BDF,
∴∠FDC=∠EDB.
在△EDB与△FDC中,
∵
,
∴△EDB≌△FDC(ASA),
∴DE=DF;
(2)∵△EDB≌△FDC,
∴BE=FC=3,
∴AB=AE+BE=4+3=7,则BC=AB=7,
∴BF=BC-CF=7-3=4.
在Rt△EBF中,∵∠EBF=90°,
∴EF
2=BE
2+BF
2=3
2+4
2,
∴EF=5.
故线段EF的长为5.

解:(1)DE=DF,理由如下:
如图,连接BD.
∵等腰直角三角形ABC中,D为AC边上中点,
∴BD⊥AC,BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=∠C.
∵DE丄DF,
∴∠FDC+∠BDF=∠EDB+∠BDF,
∴∠FDC=∠EDB.
在△EDB与△FDC中,
∵
,
∴△EDB≌△FDC(ASA),
∴DE=DF;
(2)∵△EDB≌△FDC,
∴BE=FC=3,
∴AB=AE+BE=4+3=7,则BC=AB=7,
∴BF=BC-CF=7-3=4.
在Rt△EBF中,∵∠EBF=90°,
∴EF
2=BE
2+BF
2=3
2+4
2,
∴EF=5.
故线段EF的长为5.