试题
题目:
如图,在正△ABC的三边AB、BC、CA上分别有点D、E、F,若DE⊥BC,EF⊥AC,FD⊥AB,同时成立,求D点在AB上的位置.
答案
解:∵DE⊥BC,
∴∠BDE=90°-∠B=30°,
BD=2BE,
∴∠EDF=60°,同理∠DEF=60°,∠DFE=60°,
∴△DEF为等边三角形,故DE=DF=EF,
∵在△ADF和△CFE中,
∠A=∠C
∠CFE=∠ADF=90°
EF=DE
,
∴△ADF≌△CFE,同理△CFE≌△BED,
故△ADF≌△CFE≌△BED,
∴BD=AF,
∴BD=2AD,
故D点为线段AB的三等分点.
解:∵DE⊥BC,
∴∠BDE=90°-∠B=30°,
BD=2BE,
∴∠EDF=60°,同理∠DEF=60°,∠DFE=60°,
∴△DEF为等边三角形,故DE=DF=EF,
∵在△ADF和△CFE中,
∠A=∠C
∠CFE=∠ADF=90°
EF=DE
,
∴△ADF≌△CFE,同理△CFE≌△BED,
故△ADF≌△CFE≌△BED,
∴BD=AF,
∴BD=2AD,
故D点为线段AB的三等分点.
考点梳理
考点
分析
点评
专题
等边三角形的性质;含30度角的直角三角形;勾股定理.
根据DE⊥BC,EF⊥AC,FD⊥AB可以求得△DEF为等边三角形,进而求证△ADF≌△CFE≌△BED,即AF=CE=BD,又∵AF=2AD,即可求得BD=2AD.
本题考查了等边三角形的判定,考查了全等三角形的证明和全等三角形对应边相等的性质,本题中求证△ADF≌△CFE≌△BED是解题的关键.
计算题;证明题.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )