试题
题目:
如图,以半圆的一条弦AN为对称轴将弧AN折叠过来和直径MN交于B点,如果MB:BN=2:3,且MN=10,则弦AN的长为( )
A.
3
5
B.
4
5
C.
4
3
D.
5
3
答案
B
解:如图,作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,
可得M、A、M′三点共线,MA=M′A,MB=M′B′=4,M′N=MN=10.
而M′A·M′M=M′B′·M′N,即M′A·2M′A=4×10=40.
则M′A
2
=20,
又∵M′A
2
=M′N
2
-AN
2
,
∴20=100-AN
2
,
∴AN=4
5
.
故选B.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);勾股定理.
作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,构造全等三角形,然后利用勾股定理、割线定理解答.
此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.
计算题.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )