试题
题目:
如图是某年召开的国际数学家大会会标,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则a
3
+b
3
的值为( )
A.35
B.43
C.91
D.152
答案
A
解:由题意得:大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,
即a
2
+b
2
=13,a-b=1,
解得a=3,b=2,
∴a
3
+b
3
=35,
故两条直角三角形的两条边的立方和=a
3
+b
3
=35.
故选A.
考点梳理
考点
分析
点评
勾股定理.
设每个直角三角形的两条直角边分别是a、b(a>b),则根据小正方形、大正方形的面积可以列出方程组,解方程组即可求得a、b,求a
3
+b
3
即可.
本题考查了勾股定理在直角三角形中的灵活运用,考查了正方形面积的计算,本题中列出方程组并求解是解题的关键.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )