试题
题目:
将一副直角三角板(含45°角的直角三角板ABC与含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD的面积之比等于( )
A.1:
2
B.1:2
C.1:
3
D.1:3
答案
D
解:∵直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放
∴∠D=30°,∠A=45°,AB∥CD
∴∠A=∠OCD,∠D=∠OBA
∴△AOB∽△COD
设BC=a
∴CD=
3
a
∴S
△AOB
:S
△COD
=1:3
故选:D.
考点梳理
考点
分析
点评
相似三角形的判定与性质;勾股定理.
结合图形可推出△AOB∽△COD,只要求出AB与CD的比就可知道它们的面积比,我们可以设BC为a,则AB=a,根据直角三角函数,可知DC=
3
a,即可得△AOB与△COD的面积之比.
本题主要考查相似三角形的判定及性质、直角三角形的性质等,本题关键在于找到相关的相似三角形
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )