试题

题目:
如果三角形的三个内角的度数之比为1:2:3,那么这个三角形的三条边长之比为(  )



答案
C
解:∵设三角形的三个角的度数是x°,2x°,3x°,
则x+2x+3x=180,
∴x=30,2x=60,3x=90,青果学院
∵如图,∠C=90°∠A=30°,∠B=60°,
∴AB=2BC,由勾股定理得:AC=
3
BC,
∴BC:AC:AB=1:
3
:2,
故选C.
考点梳理
含30度角的直角三角形;勾股定理.
设三角形的三个角的度数是x°,2x°,3x°,根据x+2x+3x=180,求出三角形三个角的度数,根据含30度角的直角三角形性质求出AB=2BC,根据勾股定理求出AC=
3
BC,代入求出即可.
本题考查了三角形的内角和定理,勾股定理,含30度角的直角三角形性质的应用.
找相似题