试题
题目:
(2011·锦州)如图,四边形ABCD,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为( )
A.3
B.4
C.5
D.6
答案
C
解:∵∠BMD=∠BMA+∠AMD=∠C+∠CDM,
∵∠B=∠AMD=∠C=45°,
∴∠BMA=∠CDM,
∴△ABM∽△MCD,
∴
AB
MC
=
BM
CD
,
∵M为BC边的中点,
∴MC=BM,
∵AB=8,CD=9,
∴BM=MC=6
2
,
∴BC=12
2
,
延长BA与CD交于点E,
∵∠B=∠C=45°,
∴∠E=90°,BE=CE,
∴BE=CE=12,
∴AE=BE-AB=4,DE=CE-CD=3,
在Rt△AED中,AD=5.
故选C.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;三角形的外角性质;勾股定理.
由∠BMD=∠BMA+∠AMD=∠C+∠CDM,∠B=∠AMD=∠C=45°,可证得△ABM∽△MCD,然后由相似等于相似三角形对应边成比例,即可求得MC与BM的值,然后延长BA与CD交于点E,由勾股定理,即可求得AD的长.
此题考查了相似三角形的判定与性质,勾股定理以及三角形外角的性质.此题难度较大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.
压轴题.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )