试题

题目:
青果学院(2011·泰安)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为(  )



答案
A
解:∵△CEO是△CEB翻折而成,青果学院
∴BC=OC,BE=OE,∠B=∠COE=90°,
∴EO⊥AC,
∵O是矩形ABCD的中心,
∴OE是AC的垂直平分线,AC=2BC=2×3=6,
∴AE=CE,
在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3
3

在Rt△AOE中,设OE=x,则AE=3
3
-x,
AE2=AO2+OE2,即(3
3
-x)2=32+x2,解得x=
3

∴AE=EC=3
3
-
3
=2
3

故选A.
考点梳理
翻折变换(折叠问题);勾股定理.
先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.
本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.
压轴题.
找相似题