试题

题目:
青果学院如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.
答案
解:(1)CD与EF平行.理由如下:
∵CD⊥AB,EF⊥AB,
∵垂直于同一直线的两直线互相平行,
∴CD∥EF;

(2)∵CD∥EF,
∴∠2=∠BCD,
∵∠1=∠2,
∴∠1=∠BCD,
∴DG∥BC,
∴∠ACB=∠3=115°.
解:(1)CD与EF平行.理由如下:
∵CD⊥AB,EF⊥AB,
∵垂直于同一直线的两直线互相平行,
∴CD∥EF;

(2)∵CD∥EF,
∴∠2=∠BCD,
∵∠1=∠2,
∴∠1=∠BCD,
∴DG∥BC,
∴∠ACB=∠3=115°.
考点梳理
平行线的判定与性质.
(1)根据垂直于同一条直线的两条直线互相平行即可得出答案;
(2)先根据已知条件判断出DG∥BC,再根据两直线平行,同位角相等即可得出结论.
本题考查的是平行线的判定与性质,熟知平行线的判定定理及性质是解答此题的关键.
探究型.
找相似题