试题
题目:
已知,如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.
答案
解:∵AD⊥BC,EF⊥BC,
∴∠ADF=∠EFC=90°,
∴AD∥EF,
∴∠2=∠DAC,
又∵∠4=∠C,
∴DG∥AC,
∴∠1=∠DAC,
∴∠1=∠2.
解:∵AD⊥BC,EF⊥BC,
∴∠ADF=∠EFC=90°,
∴AD∥EF,
∴∠2=∠DAC,
又∵∠4=∠C,
∴DG∥AC,
∴∠1=∠DAC,
∴∠1=∠2.
考点梳理
考点
分析
点评
专题
平行线的判定与性质.
根据垂直的定义得到∠ADF=∠EFC=90°,再根据同位角相等,两直线平行得到AD∥EF,利用直线平行的性质有∠2=∠DAC;由∠4=∠C,根据同位角相等,两直线平行得到DG∥AC,再利用直线平行的性质得∠1=∠DAC,最后利用等量代换即可得到结论.
本题考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.
证明题.
找相似题
(2000·宁波)如图,直线AB,CD被直线l所截,若∠1=∠3≠90°,则( )
如图,AC是四边形ABCD的对角线,∠1=∠2,则下列结论一定成立的是( )
如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE等于( )时,BC∥DE.
如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于( )
已知:如图,∠1=∠2=∠4,则下列结论不正确的是( )