试题
题目:
如图:∠1=∠2,∠D=90°,EF⊥CD,试说明∠3=∠B.
答案
解:∵∠1=∠2,
∴AD∥BC,
∵∠D=90°,
∴AD⊥CD,
∵EF⊥CD,
∴AD∥EF,
∴EF∥BC,
∴∠3=∠B.
解:∵∠1=∠2,
∴AD∥BC,
∵∠D=90°,
∴AD⊥CD,
∵EF⊥CD,
∴AD∥EF,
∴EF∥BC,
∴∠3=∠B.
考点梳理
考点
分析
点评
专题
平行线的判定与性质.
因为∠1=∠2,由内错角相等证明AD∥BC,又因为∠D=90°,EF⊥CD,则有AD∥EF,所以EF∥BC,故可求证∠3=∠B.
本题考查平行线的性质和判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
证明题.
找相似题
(2000·宁波)如图,直线AB,CD被直线l所截,若∠1=∠3≠90°,则( )
如图,AC是四边形ABCD的对角线,∠1=∠2,则下列结论一定成立的是( )
如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE等于( )时,BC∥DE.
如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于( )
已知:如图,∠1=∠2=∠4,则下列结论不正确的是( )