试题
题目:
如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系?为什么?
答案
平行.
证明:∵CD∥AB,
∴∠ABC=∠DCB=70°;
又∵∠CBF=20°,
∴∠ABF=50°;
∴∠ABF+∠EFB=50°+130°=180°;
∴EF∥AB(同旁内角互补,两直线平行).
平行.
证明:∵CD∥AB,
∴∠ABC=∠DCB=70°;
又∵∠CBF=20°,
∴∠ABF=50°;
∴∠ABF+∠EFB=50°+130°=180°;
∴EF∥AB(同旁内角互补,两直线平行).
考点梳理
考点
分析
点评
专题
平行线的判定与性质.
两直线的位置关系有两种:平行和相交,根据图形可以猜想两直线平行,然后根据条件探求平行的判定条件.
证明两直线平行的方法就是转化为证明两角相等或互补.
探究型.
找相似题
(2000·宁波)如图,直线AB,CD被直线l所截,若∠1=∠3≠90°,则( )
如图,AC是四边形ABCD的对角线,∠1=∠2,则下列结论一定成立的是( )
如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE等于( )时,BC∥DE.
如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于( )
已知:如图,∠1=∠2=∠4,则下列结论不正确的是( )