试题
题目:
如图所示,已知:∠ABE+∠DEB=180°,∠1=∠2,试说明∠F与∠G的关系,并说明理由.
答案
解:∠F=∠G,理由如下:
∵∠ABE+∠DEB=180°,
∴AC∥DE,
∴∠CBE=∠DEB,
∵∠1=∠2,
∴∠FBE=∠GEB,
∴BF∥GE,
∴∠F=∠G.
解:∠F=∠G,理由如下:
∵∠ABE+∠DEB=180°,
∴AC∥DE,
∴∠CBE=∠DEB,
∵∠1=∠2,
∴∠FBE=∠GEB,
∴BF∥GE,
∴∠F=∠G.
考点梳理
考点
分析
点评
专题
平行线的判定与性质.
先由同旁内角互补,两直线平行得出AC∥DE,再根据两直线平行,内错角相等得出∠CBE=∠DEB,由∠1=∠2,得出∠FBE=∠GEB,然后根据根据平行线的判定与性质即可得出∠F=∠G.
本题考查了平行线的判定与性质,用到的知识点:同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等.注意判定与性质不要混淆.
探究型.
找相似题
(2000·宁波)如图,直线AB,CD被直线l所截,若∠1=∠3≠90°,则( )
如图,AC是四边形ABCD的对角线,∠1=∠2,则下列结论一定成立的是( )
如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE等于( )时,BC∥DE.
如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于( )
已知:如图,∠1=∠2=∠4,则下列结论不正确的是( )