试题
题目:
已知,如图,点F在AB上,点E在CD上,AE、DF分别交BC于H、G,∠A=∠D,∠FGB+∠EHG=180°,问AB与CD有怎样的位置关系?为什么?
答案
解:
AB∥CD.理由如下:
∵∠FGB+∠EHG=180°,
∴∠HGD+∠EHG=180°,
∴AE∥DF,
∴∠A+∠AFD=180°,
又∵∠A=∠D,
∴∠D+∠AFD=180°,
∴AB∥CD.
解:
AB∥CD.理由如下:
∵∠FGB+∠EHG=180°,
∴∠HGD+∠EHG=180°,
∴AE∥DF,
∴∠A+∠AFD=180°,
又∵∠A=∠D,
∴∠D+∠AFD=180°,
∴AB∥CD.
考点梳理
考点
分析
点评
平行线的判定与性质;对顶角、邻补角.
由∠FGB+∠EHG=180°可得AE∥DF,于是∠A+∠AFD=180°,而∠A=∠D,等量代换可得∠D+∠AFD=180°,从而易证AB∥CD.
本题考查了平行线的判定和性质,解题的关键是理清角之间的位置关系.
找相似题
(2000·宁波)如图,直线AB,CD被直线l所截,若∠1=∠3≠90°,则( )
如图,AC是四边形ABCD的对角线,∠1=∠2,则下列结论一定成立的是( )
如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE等于( )时,BC∥DE.
如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于( )
已知:如图,∠1=∠2=∠4,则下列结论不正确的是( )