试题
题目:
如图,EB∥DC,∠C=∠E,请写出理由说明∠A=∠ADE.
答案
证明:∵EB∥DC,
∴∠C=∠ABE(两直线平行,同位角相等),
∵∠C=∠E,
∴∠ABE=∠E,
∴AC∥DE(内错角相等,两直线平行),
∴∠A=∠ADE.
证明:∵EB∥DC,
∴∠C=∠ABE(两直线平行,同位角相等),
∵∠C=∠E,
∴∠ABE=∠E,
∴AC∥DE(内错角相等,两直线平行),
∴∠A=∠ADE.
考点梳理
考点
分析
点评
专题
平行线的判定与性质.
先根据两直线平行,同位角相等求出∠C=∠ABE,从而求出∠ABE=∠E,然后根据内错角相等,两直线平行求出AC∥DE,再根据两直线平行,内错角相等即可证明.
本题考查了平行线的判定与性质,根据图形准确找出两直线平行的条件是解题的关键.
证明题.
找相似题
(2000·宁波)如图,直线AB,CD被直线l所截,若∠1=∠3≠90°,则( )
如图,AC是四边形ABCD的对角线,∠1=∠2,则下列结论一定成立的是( )
如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE等于( )时,BC∥DE.
如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于( )
已知:如图,∠1=∠2=∠4,则下列结论不正确的是( )