试题
题目:
(2010·江宁区一模)如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.
答案
证明:∵AB=AC,
∴∠B=∠C,
∵∠B=∠DAM,
∴∠C=∠DAM,
∴AM∥BC.
证明:∵AB=AC,
∴∠B=∠C,
∵∠B=∠DAM,
∴∠C=∠DAM,
∴AM∥BC.
考点梳理
考点
分析
点评
专题
平行线的判定.
判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.要证明AM∥BC,只要转化为证明∠C=∠DAM即可.
本题主要考查了平行线的判定,注意等量代换的应用.
证明题.
找相似题
(2004·荆州)如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC的条件是(
(1999·西安)下列命题中,不正确的是( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
如图是一条管道的剖面图,如果要求管道经两次拐弯后的方向保持原来不变,那么管道的两个拐角∠α,∠β之间的关系是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )