试题
题目:
如图,已知△ABC,∠CAE是△ABC的外角,在下列三项中:①AB=AC;②AD平分∠CAE;③AD∥BC.选择两项为题设,另一项为结论,组成一个真命题,并证明.
答案
解:命题:如果①②,那么③.证明如下:
∵AB=AC,
∴∠ABC=∠ACB.
∵AD平分∠CAE,
∴∠DAE=∠CAD.
又∠DAE+∠CAD=∠ABC+∠ACB,
∴2∠CAD=2∠C,
即∠CAD=∠C,
∴AD∥BC.
解:命题:如果①②,那么③.证明如下:
∵AB=AC,
∴∠ABC=∠ACB.
∵AD平分∠CAE,
∴∠DAE=∠CAD.
又∠DAE+∠CAD=∠ABC+∠ACB,
∴2∠CAD=2∠C,
即∠CAD=∠C,
∴AD∥BC.
考点梳理
考点
分析
点评
专题
平行线的判定;角平分线的定义;三角形的外角性质.
根据角平分线的定义、平行线的性质、等边对等角、等角对等边进行分析,可知组成的命题可以有3个,分别为①②·③,①③·②,②③·①.任选1个,即如果①②,那么③进行证明.
此题为开放性试题,知识的综合性较强,能够利用三角形的外角建立角之间的关系.
开放型.
找相似题
(2004·荆州)如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC的条件是(
(1999·西安)下列命题中,不正确的是( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
如图是一条管道的剖面图,如果要求管道经两次拐弯后的方向保持原来不变,那么管道的两个拐角∠α,∠β之间的关系是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )