试题
题目:
如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,求证:AB∥CD.
答案
证明:在△ABC中,∠A+∠B+∠1=180°,∠B=42°,
∴∠A+∠1=138°,
又∵∠A+10°=∠1,
∴∠A+∠A+10°=138°,
解得:∠A=64°.
∴∠A=∠ACD=64°,
∴AB∥CD(内错角相等,两直线平行).
证明:在△ABC中,∠A+∠B+∠1=180°,∠B=42°,
∴∠A+∠1=138°,
又∵∠A+10°=∠1,
∴∠A+∠A+10°=138°,
解得:∠A=64°.
∴∠A=∠ACD=64°,
∴AB∥CD(内错角相等,两直线平行).
考点梳理
考点
分析
点评
专题
三角形内角和定理;平行线的判定.
在△ABC中,∠B=42°即已知∠A+∠1=180-42=138°,又∠A+10°=∠1可以求出∠A的大小,只要能得到∠A=64°,根据内错角相等,两直线平行,就可以证出结论.
本题首先利用三角形内角和定理和∠A与∠1的关系求出∠A的度数,然后再利用平行线的判定方法得证.
证明题.
找相似题
(2004·荆州)如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC的条件是(
(1999·西安)下列命题中,不正确的是( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
如图是一条管道的剖面图,如果要求管道经两次拐弯后的方向保持原来不变,那么管道的两个拐角∠α,∠β之间的关系是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )