试题
题目:
如图一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是根据
同旁内角互补,两直线平行
同旁内角互补,两直线平行
.
答案
同旁内角互补,两直线平行
解:∵∠ABC=120°,∠BCD=60°,
∴∠ABC+∠BCD=120°+60°=180°,
∴AB∥CD(同旁内角互补,两直线平行).
考点梳理
考点
分析
点评
专题
平行线的判定.
由已知∠ABC=120°,∠BCD=60°,即∠ABC+∠BCD=120°+60°=180°,可得关于AB∥CD的判定条件:同旁内角互补,两直线平行.
本题考查的是平行线的判定,即内错角相等,两直线平行;同位角相等两直线平行;同旁内角互补两直线平行.
应用题.
找相似题
(2004·荆州)如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC的条件是(
(1999·西安)下列命题中,不正确的是( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
如图是一条管道的剖面图,如果要求管道经两次拐弯后的方向保持原来不变,那么管道的两个拐角∠α,∠β之间的关系是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )