试题

题目:
青果学院如图,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°,EG平分∠AEC,
求证:AB∥EF∥CD.
答案
证明:∵∠1=∠2,
∴AB∥EF(同位角相等,两直线平行),
∴∠MAE=∠AEF=45°,
∵∠FEG=15°,
∴∠AEG=60°,
∴∠GEC=60°,
∴∠FEC=∠FEG+∠GEC=75°,
∵∠NCE=75°,
∴∠FEC=∠ECN,
∴EF∥CD,
∴AB∥EF∥CD.
证明:∵∠1=∠2,
∴AB∥EF(同位角相等,两直线平行),
∴∠MAE=∠AEF=45°,
∵∠FEG=15°,
∴∠AEG=60°,
∴∠GEC=60°,
∴∠FEC=∠FEG+∠GEC=75°,
∵∠NCE=75°,
∴∠FEC=∠ECN,
∴EF∥CD,
∴AB∥EF∥CD.
考点梳理
平行线的判定.
首先根据平行线的判定得出AB∥EF,进而利用已知角度之间的关系得出∠FEC=∠ECN,进而得出EF∥CD,即可得出答案.
此题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质得出∠FEC=∠ECN是解题关键.
证明题.
找相似题