试题
题目:
如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?
答案
解:BC∥DE,AB∥CD.理由如下:
∵∠1=47°,∠2=133°,
而∠ABC=∠1=47°,
∴∠ABC+∠2=180°,
∴AB∥CD;
∵∠2=133°,
∴∠BCD=180°-133°=47°,
而∠D=47°,
∴∠BCD=∠D,
∴BC∥DE.
解:BC∥DE,AB∥CD.理由如下:
∵∠1=47°,∠2=133°,
而∠ABC=∠1=47°,
∴∠ABC+∠2=180°,
∴AB∥CD;
∵∠2=133°,
∴∠BCD=180°-133°=47°,
而∠D=47°,
∴∠BCD=∠D,
∴BC∥DE.
考点梳理
考点
分析
点评
平行线的判定.
由于∠1=47°,∠2=133°,则∠ABC+∠2=180°,根据平行线的判定方法得到AB∥CD;然后利用平角的定义计算出∠BCD=180°-133°=47°,
则∠BCD=∠D,根据平行线的判定即可得到BC∥DE.
本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.
找相似题
(2004·荆州)如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC的条件是(
(1999·西安)下列命题中,不正确的是( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
如图是一条管道的剖面图,如果要求管道经两次拐弯后的方向保持原来不变,那么管道的两个拐角∠α,∠β之间的关系是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )