答案

证明:(1)证明:六边形的内角和为:(6-2)×180°=720°.
∵六边形ABCDEF的内角都相等,
∴每个内角的度数为:720°÷6=120°.
又∵∠DAB=60°,四边形ABCD的内角和为360°,
∴∠CDA=360°-∠DAB-∠B-∠C=360°-60°-120°-120°=60°,
∴∠EDA=120°-∠CDA=120°-60°=60°,
∴∠EDA=∠DAB=60°,
∴AB∥DE(内错角相等,两直线平行);
(2)∵DB平分∠CDA,
∴∠ADB=
∠ADC=30°,
又∵∠DAB=60°,
∴∠ABD=180°-∠ADB-∠DAB=180°-30°-60°=90°.
∴BD⊥AB.

证明:(1)证明:六边形的内角和为:(6-2)×180°=720°.
∵六边形ABCDEF的内角都相等,
∴每个内角的度数为:720°÷6=120°.
又∵∠DAB=60°,四边形ABCD的内角和为360°,
∴∠CDA=360°-∠DAB-∠B-∠C=360°-60°-120°-120°=60°,
∴∠EDA=120°-∠CDA=120°-60°=60°,
∴∠EDA=∠DAB=60°,
∴AB∥DE(内错角相等,两直线平行);
(2)∵DB平分∠CDA,
∴∠ADB=
∠ADC=30°,
又∵∠DAB=60°,
∴∠ABD=180°-∠ADB-∠DAB=180°-30°-60°=90°.
∴BD⊥AB.