试题
题目:
如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB与DE有什么关系?BC与EF有这种关系吗?这些结论是怎样得出的?
答案
解:AB∥DE且BC∥EF.
证明:∵六边形ABCDEF的内角都相等,
∴∠FAB=∠B=∠C=∠CDE=∠E=∠F=120°,
又∵∠DAB=60°,
∴∠FAD=∠DAB=60°,
∴∠F+∠FAD=∠B+∠DAB=180°,
∴BC∥AD,EF∥AD,
∴BC∥EF.
∵BC∥AD,∠C=120°,
∴∠C+∠ADC=180°,
又∵∠C=120°,
∴∠ADC=60°,
∴∠EDA=60°,
∴∠EDA=∠DAB,
∴AB∥DE.
解:AB∥DE且BC∥EF.
证明:∵六边形ABCDEF的内角都相等,
∴∠FAB=∠B=∠C=∠CDE=∠E=∠F=120°,
又∵∠DAB=60°,
∴∠FAD=∠DAB=60°,
∴∠F+∠FAD=∠B+∠DAB=180°,
∴BC∥AD,EF∥AD,
∴BC∥EF.
∵BC∥AD,∠C=120°,
∴∠C+∠ADC=180°,
又∵∠C=120°,
∴∠ADC=60°,
∴∠EDA=60°,
∴∠EDA=∠DAB,
∴AB∥DE.
考点梳理
考点
分析
点评
多边形内角与外角;平行线的判定.
首先求得多边形的各个角的度数,然后根据平行线的判定定理以及性质定理即可求解.
本题考查多边形的内角的计算以及平行线的判定与性质定理,理解定理是关键.
找相似题
(2004·荆州)如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC的条件是(
(1999·西安)下列命题中,不正确的是( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
如图是一条管道的剖面图,如果要求管道经两次拐弯后的方向保持原来不变,那么管道的两个拐角∠α,∠β之间的关系是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )