试题

题目:
已知甲、乙、丙、丁四个数之和是40,若甲数的3倍加5,乙数的4倍,丙数的2倍减1,丁数加
1
2
得到的新的四个数相等,则甲、乙、丙、丁这四个数中最大的数等于
39
2
39
2

答案
39
2

解:设新的四个相等的数为x,由题意,得
x-5
3
+
x
4
+
x+1
2
+x-
1
2
=40,
解得:x=20,
∴甲数为:5,
乙数为:5,
丙数位:
21
2

丁数为:
39
2

39
2
21
2
>5

∴这四个数中最大的数是
39
2

故答案为:
39
2
考点梳理
一元一次方程的应用.
设新的四个相等的数为x,则甲数原为
x-5
3
,乙数原为
x
4
,丙数原为
x+1
2
,丁数原为x-
1
2
,根据原四个数的和为40建立方程求出其解即可.
本题考查了数字问题的运用,列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据原四个数的和为40建立方程是关键.
找相似题