题目:

(2011·高淳县一模)如图,某同学在大楼AD的观光电梯中的E点测得大楼BC楼底C点的俯角为45°,此时该同学距地面高度AE为20米,电梯再上升5米到达D点,此时测得大楼BC楼顶B点的仰角为37°,求大楼的高度BC.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).
答案

解:过点E、D分别作BC的垂线,交BC于点F、G.
在Rt△EFC中,因为FC=AE=20,∠FEC=45°,
所以EF=20,
在Rt△DBG中,DG=EF=20,∠BDG=37°
因为tan∠BDG=
≈0.75,
所以BG≈DG×0.75=20×0.75=15,
而GF=DE=5,
所以BC=BG+GF+FC=15+5+20=40.
答:大楼BC的高度是40米.

解:过点E、D分别作BC的垂线,交BC于点F、G.
在Rt△EFC中,因为FC=AE=20,∠FEC=45°,
所以EF=20,
在Rt△DBG中,DG=EF=20,∠BDG=37°
因为tan∠BDG=
≈0.75,
所以BG≈DG×0.75=20×0.75=15,
而GF=DE=5,
所以BC=BG+GF+FC=15+5+20=40.
答:大楼BC的高度是40米.