试题
题目:
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
A.
(10
3
+2)m
B.
(20
3
+2)m
C.
(5
3
+2)m
D.
(15
3
+2)m
答案
D
解:在Rt△AFG中,tan∠AFG=
AG
FG
,
∴FG=
AG
tan∠AFG
=
AG
3
,
在Rt△ACG中,tan∠ACG=
AG
CG
,
∴CG=
AG
tan∠ACG
=
3
AG.
又∵CG-FG=30,
即
3
AG-
AG
3
=30,
∴AG=15
3
,
∴AB=15
3
+2.
答:这幢教学楼的高度AB为(15
3
+2)m.
故选D.
考点梳理
考点
分析
点评
解直角三角形的应用-仰角俯角问题.
利用60°的正切值可表示出FG长,进而利用∠ACG的正切函数求AG长,加上2m即为这幢教学楼的高度AB.
考查了解直角三角形的应用-仰角俯角问题,构造仰角所在的直角三角形,利用两个直角三角形的公共边求解是常用的解直角三角形的方法.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )
(2007·舟山)如图,在高楼前D点测得楼顶的仰角为30°,向高楼前进60米到C点,又测得仰角为45°,则该高楼的高度大约为( )