(2012·宁津县二模)如图所示,我班同学组织课外实践活动,预测量一建筑物的高度,在建筑物附近一斜坡A点测得建筑物顶端D的仰角为30°,在坡底C点测得建筑物顶端D的仰角为60°,已知A点的高度AB为20米,AC的坡度为1:1(即AB:BC=1:1),且B、C、E三点在同一条直线上,请根据以上条件求出建筑物DE的高度(测量器的高度忽略不计).
解:如图,过点A作AF⊥DE于F,| DE |
| tan∠DCE |
| DE |
| tan60° |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| 3 |
| 3 |
解:如图,过点A作AF⊥DE于F,| DE |
| tan∠DCE |
| DE |
| tan60° |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| 3 |
| 3 |
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
| 3 |
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )