试题
题目:
(2007·徐汇区二模)如图,在离旗杆6米的A处,放置了测角仪的支架AD,用测角仪从D测得旗杆顶端C的仰角为50°,已知测角仪高AD=1.5米,求旗杆的高度(结果保留一位小数).(备用数据:sin50°≈0.77,cos50°≈0.64,cos50°≈0.64,tan50°≈1.19)
答案
解:过点D作DE⊥BC交BC于E,
在△CDE中,有CE=tan50°×DE=1.19×6≈7.14,
故BC=BE+CE=1.5+7.14≈8.6,
答:旗杆的高度为8.6米.
解:过点D作DE⊥BC交BC于E,
在△CDE中,有CE=tan50°×DE=1.19×6≈7.14,
故BC=BE+CE=1.5+7.14≈8.6,
答:旗杆的高度为8.6米.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-仰角俯角问题.
首先分析图形:根据题意构造直角三角形△ADE,解其可得DE的长,进而借助BC=EC+EB可解即可求出答案.
此题考查的知识点是解直角三角形的应用-仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
几何综合题.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )