试题
题目:
(2012·泰州一模)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:
3
,且AB=30m,李亮同学在大堤上A点处用高1.5m的测量仪测出高压电线杆CD顶端D的仰角为30°,己知地面BC宽30m,求高压电线杆CD的高度(结果保留三个有效数字,
3
≈1.732)
答案
解:延长MA交直线BC于点E,
∵AB=30,i=1:
3
,
∴AE=15,BE=15
3
,
∴MN=BC+BE=30+15
3
,
又∵仰角为30°,
∴DN=
MN
3
=
30+15
3
3
=10
3
+15,
CD=DN+NC=DN+MA+AE=10
3
+15+15+1.5≈17.32+31.5≈48.8(m).
解:延长MA交直线BC于点E,
∵AB=30,i=1:
3
,
∴AE=15,BE=15
3
,
∴MN=BC+BE=30+15
3
,
又∵仰角为30°,
∴DN=
MN
3
=
30+15
3
3
=10
3
+15,
CD=DN+NC=DN+MA+AE=10
3
+15+15+1.5≈17.32+31.5≈48.8(m).
考点梳理
考点
分析
点评
解直角三角形的应用-仰角俯角问题.
由i的值求得大堤的高度AE,点A到点B的水平距离BE,从而求得MN的长度,由仰角求得DN的高度,从而由DN,AM,h求得高度CD.
本题考查了直角三角形在坡度上的应用,由i的值求得大堤的高度和点A到点B的水平距离,求得MN,由仰角求得DN高度,进而求得总高度.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )