试题
题目:
(2013·下城区二模)如图,两个观察者从A,B两地观测空中C处一个气球,分别测得仰角为45°和60°.已知A,B两地相距30米,延长AB,作CD⊥AD于D,当气球沿着与AB平行的方向飘移到点C′时,在A处又测得气球的仰角为30°,求CD与CC′的长度.(结果保留根号)
答案
解:过点C′作AD的延长线的垂线,垂足为D′,
在Rt△ACD中,设CD=x,
∵∠CAD=45°,
∴CD=AD=x,
在Rt△BCD中,∠CBD=60°,则BD=
3
3
x,
∵AD-BD=AB,即x-
3
3
x=30,
∴解得:x=
90
3-
3
=(45+15
3
)(米),
即CD=(45+15
3
)(米);
在Rt△AC′D′中,
C′D′
AD′
=tan30°=
3
3
,
∴AD′=45+45
3
,
∴CC′=AD′-CD=30
3
米.
解:过点C′作AD的延长线的垂线,垂足为D′,
在Rt△ACD中,设CD=x,
∵∠CAD=45°,
∴CD=AD=x,
在Rt△BCD中,∠CBD=60°,则BD=
3
3
x,
∵AD-BD=AB,即x-
3
3
x=30,
∴解得:x=
90
3-
3
=(45+15
3
)(米),
即CD=(45+15
3
)(米);
在Rt△AC′D′中,
C′D′
AD′
=tan30°=
3
3
,
∴AD′=45+45
3
,
∴CC′=AD′-CD=30
3
米.
考点梳理
考点
分析
点评
解直角三角形的应用-仰角俯角问题.
过点C′作AD的延长线的垂线,垂足为D′,在Rt△ACD和Rt△CBD中,设CD=x,分别用CD表示AD、BD的长度,然后根据AD-BD=AB,求出x的值,在Rt△AC′D′中,求出AD′的长度,继而可求得DD′即CC′的长度.
本题考查了解直角三角形的应用,难度适中,解答本题的关键是根据仰角构造直角三角形并解直角三角形.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )