试题
题目:
(2003·青海)如图,登山队员在山脚A点测得山顶B的仰角∠CAB=45°,当沿倾斜角为30°的斜坡前进100米到达D点后,又在D点测得山顶B点的仰角为60°,求出高BC(精确到1米).(参考数据:
3
≈1.732,
2
≈1.414)
答案
解:过D作DE⊥AC于E,作DF⊥BC于F(1分).
∵∠BAC=45°,∠ACB=90°.
∴∠ABC=45°.(2分)
又∵∠BDF=60°.
∴∠DBF=30°.
∴∠DAB=∠DBA=15°.(3分)
∴DB=DA=100.(4分)
∵∠DAE=30°.
∴FC=DE=
1
2
AD=50.(5分)
在△BDF中,sin∠BDF=
BF
BD
.
∴BF=BD×sin∠BDF=100×
3
2
=50
3
.(6分)
∴山高BC=BF+FC=50
3
+50≈137(米).(7分)
解:过D作DE⊥AC于E,作DF⊥BC于F(1分).
∵∠BAC=45°,∠ACB=90°.
∴∠ABC=45°.(2分)
又∵∠BDF=60°.
∴∠DBF=30°.
∴∠DAB=∠DBA=15°.(3分)
∴DB=DA=100.(4分)
∵∠DAE=30°.
∴FC=DE=
1
2
AD=50.(5分)
在△BDF中,sin∠BDF=
BF
BD
.
∴BF=BD×sin∠BDF=100×
3
2
=50
3
.(6分)
∴山高BC=BF+FC=50
3
+50≈137(米).(7分)
考点梳理
考点
分析
点评
专题
解直角三角形的应用-仰角俯角问题.
过点D作DE⊥AC,△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.可以设EC=x,在直角△BDF中,根据勾股定理,可以用x表示出BF,根据AC=BC就可以得到关于x的方程,就可以求出x,得到BC,即可求出山高.
本意的难度较大,是根据勾股定理,把问题转化为方程问题.
压轴题.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )