试题
题目:
(2005·徐州)(A类)如图1,在与旗杆AB相距20米的C处,用高1.20米的测角仪测得旗杆顶端B的仰角α=30度.求旗杆AB的高(精确到0.1米).
(B类)如图2,在C处用高1.20米的测角仪测得塔AB顶端B的仰角α=30°,向塔的方向前进20米到E处,又测得塔顶端B的仰角β=45度.求塔AB的高.
(精确到0.1米).我选做
类题,解答如下:
答案
解:(A类)在Rt△BED中,
BE=DEtan30°=ACtan30度.
AB=BE+EA=BE+CD≈12.7(米),
答:旗杆AB的高约为12.7米.
(B类)在Rt△BGF中,∵β=45°,∴BG=FG.
在Rt△BGD中,
BG=DGtan30°=(GF+FD)tan30°=(BG+20)tan30度.
∴BG=
20tan30°
1-tan30°
AB=AG+BG≈28.5(米)
答:塔AB的高约为28.5米.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-仰角俯角问题.
A类:此题需要先解直角三角形△DBE,可得BE的数值;加上AE的大小,可得AB的数值.
B类:首先根据题意分析图形;本题涉及到两个直角三角形,解之求得GD与DF的大小,再利用DF=DG-FG=20,进而可解出BG的值,加上AG即可求出答案.
本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.
计算题.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )