试题
题目:
(2009·昆明)如图,AC是我市某大楼的高,在地面上B点处测得楼顶A的仰角为45°,沿BC方向前进18米到达D点,测得tan∠ADC=
5
3
.现打算从大楼顶端A点悬挂一幅庆祝建国60周年的大型标语,若标语底端距地面15m,请你计算标语AE的长度应为多少?
答案
解:在Rt△ABC中,∠ACB=90°,∠ABC=45°,
∴Rt△ABC是等腰直角三角形,AC=BC.
在Rt△ADC中,
∠ACD=90°,tan∠ADC=
AC
DC
=
5
3
,
∴DC=
3
5
AC.
∵BC-DC=BD,即AC-
3
5
AC=18,
∴AC=45.
则AE=AC-EC=45-15=30.
答:标语AE的长度应为30米.
解:在Rt△ABC中,∠ACB=90°,∠ABC=45°,
∴Rt△ABC是等腰直角三角形,AC=BC.
在Rt△ADC中,
∠ACD=90°,tan∠ADC=
AC
DC
=
5
3
,
∴DC=
3
5
AC.
∵BC-DC=BD,即AC-
3
5
AC=18,
∴AC=45.
则AE=AC-EC=45-15=30.
答:标语AE的长度应为30米.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-仰角俯角问题.
首先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形,即△ABC和△ADC.根据已知角的正切函数,可求得BC与AC、CD与AC之间的关系式,利用公共边列方程求AC后,AE即可解答.
本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
应用题;压轴题.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )