试题
题目:
(2009·烟台)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据
3
=1.73)
答案
解:过点C作CE⊥AB于E.
∵∠ADC=90°-60°=30°,∠ACD=90°-30°=60°,
∴∠CAD=90°.
∵CD=10,
∴AC=
1
2
CD=5.
在Rt△ACE中,
∵∠AEC=90°,∠ACE=30°,
∴AE=
1
2
AC=
5
2
,
CE=AC·cos∠ACE=5·cos30°=
5
2
3
.
在Rt△BCE中,
∵∠BCE=45°,
∴BE=CE=
5
2
3
,
∴AB=AE+BE=
5
2
+
5
2
3
=
5
2
(
3
+1)
≈6.8(米).
所以,雕塑AB的高度约为6.8米.
解:过点C作CE⊥AB于E.
∵∠ADC=90°-60°=30°,∠ACD=90°-30°=60°,
∴∠CAD=90°.
∵CD=10,
∴AC=
1
2
CD=5.
在Rt△ACE中,
∵∠AEC=90°,∠ACE=30°,
∴AE=
1
2
AC=
5
2
,
CE=AC·cos∠ACE=5·cos30°=
5
2
3
.
在Rt△BCE中,
∵∠BCE=45°,
∴BE=CE=
5
2
3
,
∴AB=AE+BE=
5
2
+
5
2
3
=
5
2
(
3
+1)
≈6.8(米).
所以,雕塑AB的高度约为6.8米.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-仰角俯角问题.
首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.
本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.
应用题.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )