试题
题目:
(2012·天津)如图,甲楼AB的高度为123m,自甲楼楼顶A处,测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为30°,求乙楼CD的高度(结果精确到0.1m,
3
取1.73).
答案
解:如图,过点A作AE⊥CD于点E,
根据题意,∠CAE=45°,∠DAE=30°.
∵AB⊥BD,CD⊥BD,
∴四边形ABDE为矩形.
∴DE=AB=123.
在Rt△ADE中,tan∠DAE=
DE
AE
,
∴AE=
DE
tan∠DAE
=
123
tan30°
=
123
3
3
=
123
3
.
在Rt△ACE中,由∠CAE=45°,
得CE=AE=
123
3
.
∴CD=CE+DE=
123(
3
+1)
≈335.8.
答:乙楼CD的高度约为335.8m.
解:如图,过点A作AE⊥CD于点E,
根据题意,∠CAE=45°,∠DAE=30°.
∵AB⊥BD,CD⊥BD,
∴四边形ABDE为矩形.
∴DE=AB=123.
在Rt△ADE中,tan∠DAE=
DE
AE
,
∴AE=
DE
tan∠DAE
=
123
tan30°
=
123
3
3
=
123
3
.
在Rt△ACE中,由∠CAE=45°,
得CE=AE=
123
3
.
∴CD=CE+DE=
123(
3
+1)
≈335.8.
答:乙楼CD的高度约为335.8m.
考点梳理
考点
分析
点评
解直角三角形的应用-仰角俯角问题.
首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.
考查了解直角三角形的应用-仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )