试题
题目:
(2013·天津)天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).
答案
解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,
∵在Rt△ACD中,∠ACD=∠CAD=45°,
∴AD=CD,
∵AD=AB+BD,
∴BD=AD-AB=CD-112(m),
∵在Rt△BCD中,tan∠BCD=
BD
CD
,∠BCD=90°-∠CBD=36°,
∴tan36°=
BD
CD
,
∴BD=CD·tan36°,
∴CD·tan36°=CD-112,
∴CD=
112
1-tan36°
≈
112
1-0.73
≈415(m).
答:天塔的高度约CD为:415m.
解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,
∵在Rt△ACD中,∠ACD=∠CAD=45°,
∴AD=CD,
∵AD=AB+BD,
∴BD=AD-AB=CD-112(m),
∵在Rt△BCD中,tan∠BCD=
BD
CD
,∠BCD=90°-∠CBD=36°,
∴tan36°=
BD
CD
,
∴BD=CD·tan36°,
∴CD·tan36°=CD-112,
∴CD=
112
1-tan36°
≈
112
1-0.73
≈415(m).
答:天塔的高度约CD为:415m.
考点梳理
考点
分析
点评
解直角三角形的应用-仰角俯角问题.
首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD-AB=CD-112;在Rt△BCD中,可得BD=CD·tan36°,即可得CD·tan36°=CD-112,继而求得答案.
本题考查了仰角的知识.此题难度适中,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想与方程思想的应用.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )