试题
题目:
(2013·宜宾)宜宾是国家级历史文化名城,大观楼是标志性建筑之一(如图①).喜爱数学实践活动的小伟查资料得知:大观楼始建于明代(一说是唐代韦皋所建),后毁于兵火,乾隆乙酉年(1765年)重建,它是我国目前现存最高大、最古老的楼阁之一.小伟决定用自己所学习的知识测量大观楼的高度.如图②,他利用测角仪站在B处测得大观楼最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算大观楼的高度.(测角仪高度忽略不计,
3
≈1.7,结果保留整数).
答案
解:设大观楼的高OP=x,
在Rt△POB中,∠OBP=45°,
则OB=OP=x,
在Rt△POA中,∠OAP=60°,
则OA=
OP
tan∠OAP
=
3
3
x,
由题意得,AB=OB-OA=12m,即x-
3
3
x=12,
解得:x=18+6
3
,
故大观楼的高度OP=18+6
3
≈28米.
答:大观楼的高度约为28米.
解:设大观楼的高OP=x,
在Rt△POB中,∠OBP=45°,
则OB=OP=x,
在Rt△POA中,∠OAP=60°,
则OA=
OP
tan∠OAP
=
3
3
x,
由题意得,AB=OB-OA=12m,即x-
3
3
x=12,
解得:x=18+6
3
,
故大观楼的高度OP=18+6
3
≈28米.
答:大观楼的高度约为28米.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-仰角俯角问题.
设大观楼的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=12米,可得出方程,解出即可得出答案.
本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.
应用题.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )