试题

题目:
青果学院如图,为了开发利用海洋资源,某勘测飞机欲测量一岛屿两端A、B的距离,飞机在距海平面垂直高度为100米的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D测得端点B的俯角为45°,求岛屿两端A、B的距离(结果保留根号).
答案
青果学院解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,
∵AB∥CD,
∴∠AEF=∠EFB=∠ABF=90°,
∴四边形ABFE为矩形.
∴AB=EF,AE=BF.
由题意可知:AE=BF=100米,CD=500米.
在Rt△AEC中,∠C=60°,AE=100米.
∴CE=
AE
tan60°
=
100
3
=
100
3
3
(米).
在Rt△BFD中,∠BDF=45°,BF=100米.
∴DF=
BF
tan45°
=
100
1
=100(米).
∴AB=EF=CD+DF-CE=500+100-
100
3
3
=600-
100
3
3
(米).
 答:岛屿两端A、B的距离为(600-
100
3
3
)米.
青果学院解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,
∵AB∥CD,
∴∠AEF=∠EFB=∠ABF=90°,
∴四边形ABFE为矩形.
∴AB=EF,AE=BF.
由题意可知:AE=BF=100米,CD=500米.
在Rt△AEC中,∠C=60°,AE=100米.
∴CE=
AE
tan60°
=
100
3
=
100
3
3
(米).
在Rt△BFD中,∠BDF=45°,BF=100米.
∴DF=
BF
tan45°
=
100
1
=100(米).
∴AB=EF=CD+DF-CE=500+100-
100
3
3
=600-
100
3
3
(米).
 答:岛屿两端A、B的距离为(600-
100
3
3
)米.
考点梳理
解直角三角形的应用-仰角俯角问题.
首先过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,易得四边形ABFE为矩形,根据矩形的性质,可得AB=EF,AE=BF.由题意可知:AE=BF=100米,CD=500米,然后分别在Rt△AEC与Rt△BFD中,利用三角函数即可求得CE与DF的长,继而求得岛屿两端A、B的距离.
此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.
找相似题